
Intermittency in Fibonacci chains

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 L945

(http://iopscience.iop.org/0305-4470/20/15/003)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 12:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 20 (1987) L945-L951. Printed in the UK 

LETTER TO THE EDITOR 

Intermittency in Fibonacci chains 

M Khanthat 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, 
U K  

Received 15 June 1987 

Abstract. The devil's staircase spectrum of a Fibonacci chain is obtained using a simple 
non-linear map. This map exhibits intermittency for all Fibonacci number iterates of the 
function whenever the frequency lies in a gap of the spectrum. The self-similar nature of 
the eigenfunctions is shown to be a consequence of the intermittency behaviour. Certain 
simple patterns that emerge in the gap-labelling theorem are discussed. 

The spectrum of a tight-binding electron Hamiltonian on a quasiperiodic chain is the 
same as that of a Schrodinger equation with an almost periodic potential in one 
dimension (Kohmoto et a1 1987). Both problems have been widely studied in recent 
years (Simon 1982, Kohmoto et a1 1983, 1987, Ostlund et a1 1983a, b, Kohmoto and 
Oono 1984, Ostlund and Pandit 1984, Kohmoto and Banavar 1986, Luck and Petritis 
1986, Lu et a1 1986, Niu and Nori 1986, Nori and Rodriguez 1986, Tang and Kohmoto 
1986, Evangelou 1987). The harmonic vibrations of masses or the diffusion of a particle 
are mathematically equivalent to the electron tight-binding Hamiltonian in one 
dimension. On a Fibonacci chain, the electronic spectrum is a Cantor set; in lattice 
dynamics or diffusion the integrated density of states ( I D S )  of phonons, or the eigen- 
values of the diffusion equation, is a devil's staircase. Though the major features of 
the spectra in the electron and phonon case are complementary to each other (bands 
in the electronic spectrum correspond to gaps in the phonon case), there are certain 
essential differences (Kohmoto and Banavar 1986). The long time behaviour is the 
only aspect that has been studied so far in diffusion (Kohmoto and Banavar 1986, 
Khantha and Stinchcombe 1987). In this regime the behaviour is similar to the 
low-frequency phonon dynamics. 

The technique commonly used for studying the spectrum of a Fibonacci chain (in 
the electron, phonon or diffusion case) is based on a renormalisation group equation 
which is a two-dimensional dynamical system (see, for example, Kohmoto et a1 1987). 
This was first deduced for the almost periodic Schrodinger equation (Kohmoto et a1 
1983). Since the recursion relation for the transfer matrices of the Fibonacci chain 
gives rise to the same trace mapping as the almost periodic Schrodinger operator, the 
two problems have identical spectra. 

In this letter, a simple transformation is used to deduce an effective one-dimensional 
map from which all features of the spectrum are easily obtained. A different interpreta- 
tion is proposed for the self-similar structure of the eigenfunctions in the bands (or 
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the gaps in the phonon case) of the spectrum of a Fibonacci chain. This is shown to 
be a consequence of the intermittency exhibited by the non-linear map for all Fibonacci 
number iterates of the function whenever the frequency lies in a gap. A main advantage 
of the present method is in speeding up the numerical computation of the spectrum. 
It is therefore possible to do calculations on very long chains of the order of lo5. This 
enables greater accuracy in determining the widths of the bands (or gaps). Schneider 
et a/  (1986a, b) have used a similar map in studying the motion of a quantum particle 
in a random medium. A theoretical analysis of the spectrum of a Fibonacci chain has 
been carried out recently (Stinchcombe 1987) based on a perturbation approach. The 
locations and widths of all the gaps are predicted by this technique for small values 
of the perturbation parameter. The numerical results obtained using the method 
outlined here agree well with the theoretical predictions (Stinchcombe 1987). 

A 'gap-labelling' theorem (Simon 1982) which identifies every gap in the spectrum 
uniquely is known to be valid for the Fibonacci spectrum. It is shown here that the 
ordering of the gaps follows systematically by choosing adjacent pairs of integers of 
various Fibonacci sequences. This ordering is similar to that found by Ostlund et a1 
(1983a, b) for the self-similar peaks in the spectrum of a two-parameter quasiperiodic 
map. 

Consider a Markovian master equation for the diffusion of a particle via nearest- 
neighbour jumps on a Fibonacci chain: 

where P n ( t )  is the probability of finding the particle at site n at time t ,  Tn,n, is the 
transition rate for the particle to hop from site n'  to n and 1 S n S N.  On a Fibonacci 
chain, the nearest-neighbour sites are linked either by an A or a B bond. We choose 
two different symmetric rates that correspond to jumps over A and B bonds. The 
conditional probability P (  n, t I n' ,  0) can be expressed as a superposition of N eigen- 
functions @,,(x) weighted appropriately by the eigenvalues A n  (Schneider et a1 
1986a, b). This yields 

where P: is the stationary distribution at the nth site. Substituting this in the master 
equation we obtain 

A tight-binding electron Hamiltonian or the harmonic vibrations on a quasiperiodic 
chain yields an equation similar to (3) .  Rewriting it as a transfer matrix equation we 
obtain 

dPnldt= T n , n + I P n + l  + T n , n - 1 P n - l - ( T n + l , n  + T n - l , n ) P n  (1) 

Pn( t )  = e-w'(P0,)''2@n (2) 

( u - T n , n + I -  T n . n - l ) @ n +  T n , n + t @ n + l +  T n , n - l @ n - l = O .  (3) 

A similar matrix equation for the electron case has been the starting point of the 
two-dimensional dynamical map of Kohmoto et a1 (1983). 

We consider, instead, a relation between the integrated density of states and the 
nature of eigenstates for one-dimensional nearest-neighbour coupling problems, first 
derived by Thouless (1972). Let r(0) be the characteristic function 

ln (n+z)p (z )dz  ( 5 )  



Letter to the Editor L947 

where p ( z )  is the density of states. Let the inverse localisation length and the integrated 
density of states be denoted by y’(w) and y”(w) respectively. Thouless showed that 
y’(w)+i.rry”(w) is the boundary value of the analytic function T ( w ) :  

T ( - w + i O + ) =  y’(w)+i.rry”(w). (6) 

U, = @ n / @ n + l .  (7) 

Consider the ratio U,, of eigenfunctions at two neighbouring sites 

The transfer matrix equation (4) can be expressed in terms of U,, as a one-dimensional 
map: 

It has been shown (Nieuwenhuizen 1982, Simon 1982) that the Lyapunov exponent 
of the map U,, defined by 

N 

is identical to the characteristic function r(n) in (5). Therefore, using (6), we obtain 

y(R=-w+iO+)= y‘(w)+iay”(w).  (10) 

Choosing the cut trailing the singularity of In( U,,) to lie along the negative real axis, 
one finds (Schneider er a1 1986a, b) 

(s) InlUnI n = O  
Re y ( w )  = y’(w) = lim 

N-CC 

Im y ( w )  = r r y ” ( w )  = rr Iim 

where 

1 U,, <o  .,=Io otherwise. 

Thus the IDS is proportional to the number of times the function U,, changes sign. 
Fixing w and iterating (8), the successive values of n representing the sites along the 
Fibonacci chain, and choosing appropriate values for T, depending on the local 
environment at site n, we see that (1 1 )  yields easily the inverse localisation length and 
the integrated density of states. Equation (8) is a one-dimensional map in the variable 
U,,. It should, however, be noted that the T,, are defined via the recurrence relation 
generating the Fibonacci chain (Levine and Steinhardt 1984). At any site n, the ratio 
T,,~, , - l /Tn,n+l  takes one of the three values: 1, T, /T ,  r or T, /T ,=  l / r .  The T are 
not constant parameters of the map. 

Figure 1 shows the IDS y”(w) = N ( w )  for a chain of length N = 10 946 and r = 0.5 
with periodic boundary conditions. A similar devil’s staircase spectrum is obtained 
for every value of the ratio r in the range 0 < r < 1. As the main interest in this paper 
is to point out special features of the map U,,, results are shown for a representative 
chain of length lo4. It is, however, possible to extend the calculations to chains ten 
or a hundred times longer than the one presently chosen. 
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Figure 1. The IDS N ( w )  plotted against w for TA/ T, = r = 0.5. The results were obtained 
by iterating (8) on a chain of length N = 10 946. 

/ ' ' 1 ' 1 ' " ' ~ ' "  

________ 
1 

The low-frequency behaviour of the IDS is well known. f ( w )  behaves as wl/ '  as 
w + 0. The same is true for the pure chain. This feature becomes evident by considering 
the intermittency property of the map U,, as w + 0 (Schneider er al 1986a, b). Let 

xn = 1 - U,,. (12) 
Then (8) can be expressed as 

A map of this type is known to exhibit intermittency as w + O  (Hirsch et al 1982) 
for all values of r in the range 0 s r 6 1. This behaviour is independent of the ordering 
of the T,,. Due to the hyperbolic nature of the map U,,, Schneider et al (1986a, b) 
point out that the IDS is inversely proportional to the length of the laminar region in 
intermittency. The latter scales as w - 1 / 2  and, hence, y " ( w )  = 

The devil's staircase spectrum which is markedly different from that of a pure chain 
at finite values of w arises due to the interesting and generic behaviour of the map for 
a Fibonacci sequence (. . . ABAABABAABAAB.. .) of T,,. The map U,, (or x,) exhibits 
intermittency for every value of w that lies in the gap of the spectrum for any given r 
such that O <  r < 1. Further, the intermittency is exhibited in all iterates x,,+~,,, where 
F, are the Fibonacci numbers (1, 1,2,3,5,8,  13,. . .). This is clearly seen for large 
values of F,, typically greater than 80. Figures 2 and 3 show [ U , /  plotted against q 
where q = j  x 89 and q = j  x 144, J = 1,2,3,4, .  . . , respectively. Thus the values of n at 
which IU,,l has the same value are found all along the chain at  intervals of multiples 
of Fibonacci numbers (1, 1,2,3,  5 , 8 ,  13,21, . . .). This yields self-similar eigenfunctions 
@,, when w is in a gap as shown in figure 4 of Kohmoto er a1 (1987). No particular 
structure is discernible in the iterates xntF,,, for a value of w that does not lie in a gap. 

as w + 0. 
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Figure 2. A log-linear plot of the successive values of the iterate 1 U,I corresponding to the 
Fibonacci number 9 = 89 for TA/ T, = r = 0.5 at the principal gap. The abscissa shows 
9 = j x 8 9  where j = l ,  2, 3,  4 , . . . .  

A 'gap-labelling' theorem (Simon 1982) that uniquely identifies every gap is known 
to hold good for the spectrum of a Fibonacci chain (Luck and Petritis 1986). According 
to this, every value of y " ( w )  that corresponds to a gap in the spectrum is expressible 
in the form In - m / ~ [ ,  where n and m are integers and T is the golden mean. The 
value of y"( o) at the biggest gap is 1 /  T for all 0 < r < 1 which corresponds to the pair 
(0, 1 )  for n and m. There is an interesting ordering of n and m which gives the values 
of y" that correspond to gaps of decreasing widths. The next few values of y" are 
obtained by choosing n and m to be adjacent members of Fibonacci sequences 

(0, 1 ,  1 , 2 , 3 , 5 , 8 ,  f .  .) 

( 3 , 3 , 6 , 9 ,  15 ,24 , .  . .) 
etc. Thus the pairs (1, l ) ,  (2 ,2 ) ,  (1 ,3 ) ,  (2 ,4 ) ,  (3,4),  (1 ,2) ,  (6 ,3) ,  (5 ,7 )  label the next 
seven gaps. Any adjacent pair that gives a value of y" greater than unity is prohibited. 
Beyond (1 ,3) ,  all subsequent pairs of the first two integers of all Fibonacci series yield 
y"> 1 and are therefore excluded. The ordering then proceeds to the next pair of 
adjacent numbers beginning at (2 ,4)  since the pair (1, 1) has already been taken into 
consideration. A new column always begins at the top sequence as can be seen by 
writing the Fibonacci sequences one below the other taking care to shift them appro- 
priately to account for certain non-contributing pairs. As an example the numerical 
results obtained for the widths of the first few gaps for r = 0.5 on a chain of length 
N = 10 946 are shown in table 1 .  It is curious to note that a similar ordering identifies 

(2, 2 , 4 , 6 ,  10, 16 , .  . .) 
(2,  5,7,  12, 19 ,31 , .  . .) 

( 1 , 3 , 4 , 7 ,  1 1 ,  18 ,...) 

( 1 , 4 , 5 , 9 ,  14 ,23 , .  . .) 
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Figure 3. The successive values of the iterate lU,I corresponding to the Fibonacci number 
q = 144 for TA/ TB = r = 0.5 at the principal gap. The abscissa shows q = j  x 144 where 
j = l , 2 , 3 , 4  . . . . .  

Table 1. The values of y " ( w )  = N ( w )  and the gap widths for the prominent gaps observed 
on a chain of length N = 10 946 for the ratio TA/ TB = r = 0.5. The corresponding gap- 
labelling integers are also shown. The error in the gap width is.of O(10-3). 

Range of w 

1.415-2.310 

2.450-2.625 
2.685-2.815 
1.075-1.155 
1.250- 1.315 
0.300-0.340 

2.335-2.360 

0.670-0.900 

2.380-2.415 

Gap width 

0.895 
0.230 
0.175 
0.130 
0.080 
0.065 
0.040 
0.035 
0.025 

N ( w )  

0.618 07 
0.382 02 
0.763 86 
0.854 11 
0.472 09 
0.527 91 
0.236 04 
0.708 23 
0.673 70 

the prominent peaks in the spectrum of a quasiperiodic map with the golden mean 
rotation number (Ostlund et a1 1983a, b). 

Finally, we note that the multifractal exponents that describe the scaling of the IDS 

around a gap (Kohmoto e? a/ 1987) can be obtained by constructing generalised 
Lyapunov exponents (Paladin and Vulpiani 1987) for the non-linear map U,,. Further 
work is in progress. 

I wish to thank Per Bak, R Stinchcombe and C Tang for discussions. The SERC, 
England, is gratefully acknowledged for the award of a fellowship. 



Letter to the Editor 

References 

L951 

Evangelou S N 1987 J.  Phys. C: Solid Stare Phys. 20 L295 
Hirsch J E, Huberman B A and Scalapino D J 1982 Phys. Rev. A 25 519 
Khantha M and Stinchcombe R B 1987 J. Phys. A: Math. Gen. 20 495 
Kohmoto M and Banavar J R 1986 Phys. Rev. B 34 563 
Kohmoto M, Kadanoff L P and Tang C 1983 Phys. Rev. Lett 50 1870 
Kohmoto M and Oono Y 1984 Phys. Left. lO2A 145 
Kohmoto M, Sutherland B and Tang C 1987 Phys. Rev. B 35 1020 
Levine D and Steinhardt P J 1984 Phys. Rev. Lett. 53 2477 
Lu J P, Odagaki T and Birman J L 1986 Phys. Rev. B 33 4809 
Luck J M and Petritis D 1986 J. Star. Phys. 42 289 
Nieuwenhuizen T M 1982 Physica 113A 173 
Niu Q and Nori F 1986 Phys. Rev. Lett. 57 2057 
Nori F and Rodriguez J P 1986 Phys. Rev. B 34 2207 
Ostlund S, Pandit R, Rand D, Schellnhuber H J and Siggia E 1983a Phys. Rev. Let(. 50 1873 
Ostlund S and Pandit R 1984 Phys. Rev. B 29 1394 
Ostlund S, Rand D, Sethna J and Siggia E 1983b Physica 8D 303 
Paladin G and Vulpiani A 1987 Phys. Rev. B 35 2015 
Schneider T, Politi A and Badii R 1986a Phys. Rev. A 34 2505 
Schneider T, Soerensen M P, Politi A and Zannetti M 1986b Phys. Rev. Left. 56 2341 
Simon B 1982 Adv. Appl. Math. 3 463 
Stinchcombe R B 1987 submitted for publication 
Tang C and Kohmoto M 1986 Phys. Rev. B 34 2041 
Thouless D J 1972 J.  Phys. C: Solid State Phys. 5 77 


